Exponential splines and minimal-support bases for curve representation
نویسندگان
چکیده
Our interest is to characterize the spline-like integer-shift-invariant bases capable of reproducing exponential polynomial curves. We prove that any compact-support function that reproduces a subspace of the exponential polynomials can be expressed as the convolution of an exponential B-spline with a compact-support distribution. As a direct consequence of this factorization theorem, we show that the minimal-support basis functions of that subspace are linear combinations of derivatives of exponential B-splines. These minimalsupport basis functions form a natural multiscale hierarchy, which we utilize to design fast multiresolution algorithms and subdivision schemes for the representation of closed geometric curves. This makes them attractive from a computational point of view. Finally, we illustrate our scheme by constructing minimalsupport bases that reproduce ellipses and higher-order harmonic curves.
منابع مشابه
Wavelet Analysis in Spaces of Slowly Growing Splines via Integral Representation
In this paper we consider polynomial splines with equidistant nodes which may grow as O|x|. We present an integral representation of such splines with a distribution kernel where exponential splines are used as basic functions. By this means we characterize splines possessing the property that translations of any such spline form a basis of corresponding spline space. It is shown that any such ...
متن کاملA representation for some groups, a geometric approach
In the present paper, we are going to use geometric and topological concepts, entities and properties of the integral curves of linear vector fields, and the theory of differential equations, to establish a representation for some groups on $R^{n} (ngeq 1)$. Among other things, we investigate the surjectivity and faithfulness of the representation. At the end, we give some app...
متن کاملConstrained Interpolation via Cubic Hermite Splines
Introduction In industrial designing and manufacturing, it is often required to generate a smooth function approximating a given set of data which preserves certain shape properties of the data such as positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation. It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than least ...
متن کاملGalerkin Method for the Numerical Solution of the Advection-Diffusion Equation by Using Exponential B-splines
In this paper, the exponential B-spline functions are used for the numerical solution of the advection-diffusion equation. Two numerical examples related to pure advection in a finitely long channel and the distribution of an initial Gaussian pulse are employed to illustrate the accuracy and the efficiency of the method. Obtained results are compared with some early studies.
متن کاملSnakes with Ellipse-Reproducing Property
We present a new class of continuously defined parametric snakes using a special kind of exponential splines as basis functions. We have enforced our bases to have the shortestpossible support subject to some design constraints to maximize efficiency. While the resulting snakes are versatile enough to provide a good approximation of any closed curve in the plane, their most important feature is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Aided Geometric Design
دوره 29 شماره
صفحات -
تاریخ انتشار 2012